Relative Rates of Base-catalyzed H-D Exchange in Butan-2-one

By J. WARKENTIN and O. S. TEE

(Department of Chemistry, McMaster University, Hamilton, Ontario)

WE have studied the rates of H–D exchange at the 1- and 3- positions of butan-2-one, using n.m.r. spectroscopy.¹ In D_2O-OD^- the rates at the two

positions are nearly equal, while for the weaker bases p-O₂N·C₆H₄O⁻ and CH₃CO₃⁻, the methylene group exchanges more rapidly (Table).

The surprising result is that the methyl group at C-3 does not specifically retard HO--catalyzed enolization at that site. The lower overall rate of enolization of butan-2-one, relative to that of accelerating effect of an α -alkyl group on the rate of acid-catalyzed enolization.4

Our results for base-catalysis by nitrophenoxide and acetate are those predicated from consideration

TABLE

Base	Temp.	Catalytic Const		
(Na+ salt)	(°c)	k _s	k ₁	k_{3}/k_{1}
OD-	0.00 ± 0.05	$4.64\pm0.23 imes10^{-3}$	$4.59 \pm 0.13 imes 10^{-3}$	1.01 ± 0.09 b
$p - O_2 NC \cdot H_4 O^-$	$59\cdot 2 \pm 0\cdot 03$	$1.34 \pm 0.07 \times 10^{-4}$	$8.93 \pm 0.78 imes 10^{-5}$	1.50 ± 0.21
CH ₃ CO ₂ -	$59\cdot2\pm0\cdot03$	$1.18 \pm 0.05 imes 10^{-6}$	5.47 \pm 0.70 $ imes$ 10-7	$2 \cdot 16 \pm 0 \cdot 36$

^a Constants for OD⁻ are the average of several determinations. Those for the weaker bases were obtained by an extrapolation technique, since the overall rates in such runs contain a substantial contribution from catalysis by OH-. ^b This is a minimum value for the rate ratio in water. Our medium was 1-2 M-ketone in water and we have found that the ratio k_{3}/k_{1} rises with decreasing ketone concentration.

acetone,² is therefore not readily explicable in terms of inductive destabilization of an enolate-like transition state. The results may be accounted for in terms of the termolecular mechanism involving hydroxide as base and water as acid.³ An enollike transition state, with very little negative charge in the ketone moiety, should be stabilized by an alkyl substituent at developing sp^2 -carbon. Such stabilization is usually invoked to explain the of the effect that changing the base strength should have on the position of the transition state in the enol-like region of the reaction co-ordinate.⁵

The overall implications of our data are that enolization by dilute HO⁻ in H₂O does not go by a carbanion mechanism and that the polar effect of an alkyl group, on rate of base-promoted enolization in aqueous medium, has been overemphasized or even misinterpreted.

(Received, February 21st, 1966; Com. 107.)

- ¹ O. S. Tee and J. Warkentin, Canad. J. Chem., 1965, 43, 2424.
- ² C. F. Cullis and M. H. Hashmi, J. Chem. Soc., 1957, 1548.
- ³ W. D. Emmons and M. F. Hawthorne, J. Amer. Chem. Soc., 1956, 78, 5593; cf. E. S. Gould, "Mechanism and Structure in Organic Chemistry", Henry Holt and Co., New York, 1959, p. 384. 4 H. M. E. Cardwell and A. E. H. Kilner, J. Chem. Soc., 1951, 2430.
- ⁵ R. F. W. Bader, Canad. J. Chem., 1964, 42, 1822.